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A comparative study of critical temperature estimation of atomic fluid and chain molecules
using fourth-order Binder cumulant and simplified scaling laws

Sudhir K. Singha*1 and Jayant K. Singhb2

aDepartment of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai 400019, India; bDepartment of
Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

(Received 3 April 2012; final version received 28 June 2012)

Grand-canonical transition-matrix Monte Carlo simulation with histogram reweighting and finite-size scaling technique are
used to calculate fourth-order Binder cumulant of order parameter along the vapour–liquid coexistence line to calculate the
critical temperature of bulk and confined square-well fluid in slit pore of two pore sizes. Further, this approach is utilised to
estimate the critical temperatures of relatively more complex fluids such as n-alkanes confined in graphite and mica slit
pores of different slit widths. The estimated critical temperatures are compared with the critical temperature obtained for the
same systems using simplified form of the scaling law. This investigation reveals that critical temperatures of simple and
complex fluids in bulk state and under confinement, estimated using the scaling law, are within reasonable accuracy with that
obtained using more accurate and rigorous approach of fourth-order Binder’s cumulant.
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1. Introduction

Computer simulation techniques such as Monte Carlo and

molecular dynamics methods yield numerically exact

information (apart from statistical errors) on model

systems of classical statistical mechanics. However, a

systematic limitation is the restriction to a finite particle

number or system size. This limitation is particularly

restrictive near critical points. However, these finite size

effects can also be used as a tool for the quantitative study

of phase transitions and critical phenomena [1]. Critical

temperature of confined fluids depends on two major

factors: (1) the range and strength of attractive and

repulsive interactions and (2) the dimensionality or pore

width of the system under investigation [2,3]. Unfortu-

nately, in the vicinity of the critical point, computer

simulations cannot give accurate results due to the finite

size effects, which do not allow taking into account the

long-range density fluctuations [4]. Hence, several

methods have been devised to estimate the critical

temperature on the basis of analysis of numerical data

obtained from simulations. Major methods that have been

applied for bulk, confined and 2D fluids include mixed-

field finite-size scaling technique [5–9], simplified form of

scaling law of density [2,3,10] and fourth-order Binder

cumulant approach [11–13]. Undoubtedly, mixed-field

technique and fourth-order cumulant approach are more

rigorous techniques for critical temperature estimation.

Moreover, it has been shown in earlier investigations that

for realistic intermolecular potentials, the combination of

histogram reweighting techniques with the Binder fourth-

order cumulant calculation is completely equivalent to the

mixed-field method and can be employed in a finite system

size study in order to estimate the critical parameters with

the same precision as for the mixed-field studies [14].

To our best knowledge, the literature lacks comparison

of critical temperature estimates via different approaches

for confined fluids, in particular, chain molecules such as

alkanes. This work is to fill the gap. In this work, we have

compared the critical temperature estimation of simple and

complex fluids in bulk and confined states obtained from

two methods, viz. simplified form of scaling law of density

[2,3] and fourth-order cumulant approach [11]. For the

sake of appropriate comparison, square-well fluid is a

representative simple fluid. On the other hand, we have

considered alkane as an example of relatively complex

fluids. As for confinement, we have considered slit pore

with smooth walls and atomistically detailed graphite and

mica pores. The former is used to confine a square-well

fluid and the latter are used for the alkanes (n-butane and

n-octane).

This paper is organised as follows. Section 2 provides

a short description of methodology, fluid and surface

potential models, information concerning model

parameters of the simulation and the critical temperature

estimation techniques used in this work. The results

obtained in this work are described in Section 3, followed

by conclusions in Section 4.
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2. Simulation methodology, potential models and

critical temperature estimation technique

We have employed grand-canonical transition-‘matrix

Monte Carlo (GC-TMMC) simulation technique [2,3]

mainly due to ease of utilising the parallel processors and

efficiency over other Monte Carlo techniques [15]. GC-

TMMC simulations are conducted in a grand-canonical

ensemble. The macroscopic probability is calculated by

summing all the microstates at a constant number of

molecules. A book keeping scheme of the transition matrix

is employed to obtain the macroscopic probability. In this

scheme, for each Monte Carlo move we record the

acceptance probability in a matrix, regardless of whether

the move is being accepted or not. In the current grand-

canonical simulation work, the transition probability

matrix is tridiagonal. Moreover, to ensure a uniform

sampling across all densities, we have employed multi-

canonical sampling scheme. Histogram-reweighting

method is utilised to obtain the coexistence chemical

potential. At a given coexistence of chemical potential, we

could observe two peaks in the macrostate probability

distribution. The detail method of GC-TMMC technique is

described elsewhere [16,17]. We have studied two

different model fluids: square-well potential model for

simple spherical molecule and modified Buckingham

exponential potential model [18] for chain-like molecules

such as n-alkanes. The confining surfaces for the

considered model fluids are smooth and structureless,

modelled with square-well potential for confined square-

well fluid molecules and by 9-3 potential [19] for confined

n-alkanes. Models and simulation details are as follows.

2.1 Potential models and simulation details

Fluid–fluid interaction and wall–fluid interaction for

square-well potentials are represented by the following

expressions:

uffðrÞ ¼

1; 0 , r , sff ;

21ff ; sff # r , lffsff ;

0; lffsff # r;

8>><
>>:

uwfðzÞ ¼

1; 0 , z , sff

2
;

21wf ;
sff

2
# z , lwfsff ;

0; lwfsff # z;

8>><
>>: ð1Þ

where r is the inter-particle separation distance, z is the

separation distance of the particle from the surface, lffsff

is the fluid–fluid potential well diameter, 1ff is the depth of

the fluid–fluid potential well, sff is the diameter of the

fluid–fluid hard core, lwfsff is the fluid–wall potential

well diameter and 1wf is the depth of the fluid–wall

potential. All quantities reported in the rest of the article

are made a dimensional using characteristic energy, 1ff,

and length scale, sff. For example, temperature is reduced

by 1ff/k. The parameters, lff, lwf, 1ff and 1wf, are kept 1.5,

1.0, 1.0 and 4.0, respectively.

A united-atom approach [20] is used to model the

n-alkane molecules. Non-bonded site–site interactions

are described with the modified Buckingham exponential

intermolecular potential [18], for which pair interaction

energy, U, is represented as

UðrÞ ¼ 1
126=a

6
a
exp a 12 r

rm

h i� �
2 rm

r

� �6h in o
; for r. rmax;

UðrÞ ¼1; for r, rmax;

ð2Þ

where 1, rm and a are adjustable parameters. The variable

rm is the radial distance at which UðrÞ reaches a minimum

and the cut-off distance rmax represents the smallest radial

distance for which dðUðrÞÞ=dðrÞ ¼ 0. The radial distance

for which UðrÞ ¼ 0 is denoted by s. The parameters 1, s

and a are 129.63K, 3.679 Å and 16, respectively, for the

methyl group (ZCH3) and 73.5 K, 4.00 Å and 22,

respectively, for the methylene group (ZCH2Z). The

other details related to cross-parameter evaluation, bond

bending angle and torsion angle potential and related

parameters are reported and taken from Ref. [2]. The

wall–fluid interaction for the graphite and mica surfaces

with n-alkane molecule are described by the 9-3 potential

[19], given as

fwfðzÞ ¼
2

3
prw1wfs

3
wf

2

15

swf

z

� �9

2
swf

z

� �3
( )

; ð3Þ

where z is the distance of the fluid particle from the wall

and rw, 1wf and swf are the parameters of the 9-3 potential.

In Equation (3), swf ¼ ðsw þ siiÞ=2, where sw denotes

‘diameter’ of a wall atom and sii refers to the molecular

diameter of corresponding CH2ZCH2 or CH3ZCH3Z

interactions. Potential parameters, rw, 1wf and sw, for

graphite and mica surfaces can be seen in Ref. [2].

In this work, grand-canonical simulations are con-

ducted with 30% displacement and 70% insertion/deletion

moves for the square-well model system. For the phase

coexistence simulations of the bulk square-well fluid, box

sizes were varied discretely from 10 to 20 molecular

diameters. On the other hand, for slit width, H ¼ 8 the box

edge length along the unrestricted directions was varied

discretely from 8 to 15 molecular diameters and for H ¼ 2

it was varied from 28 to 50 molecular diameters. Further,

for confined n-alkanes, configurational-bias grand-

canonical simulations are conducted with 15% particle

displacement, 50% particle insertion/deletion, 15%

particle rotation and 20% particle regrowth. For the

phase coexistence simulation, box sizes for n-butane

confined in 20 Å slit width were varied in unrestricted

directions from 50 to 100 Å. However, box sizes for
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n-octane confined in 30 Å slit width were varied from 70 to

110 Å. The simulation run lengths were varied from 10 to

100 h depending on the type of molecule and nature of

confinement under investigation, on Intel core Xeon

processor having eight central processing units.

2.2 Critical temperature estimation techniques

We have considered two different techniques for critical

temperature estimation using data obtained from GC-

TMMC simulations. Importantly, in the close vicinity of

the critical point, the characteristic size of the density

fluctuations increases, hence the simulation cannot be

performed near the critical point. Wegner [21] showed that

away from the critical point, the difference in coexisting

vapour and liquid densities can be written in the following

form:

rl 2 rv ¼ C0 12
T

Tc

� �b

þC1 12
T

Tc

� �bþD

þ C2 12
T

Tc

� �bþ2D

þ· · ·;

ð4Þ

where rl, rv and Tc are coexistence liquid and vapour

number densities and critical temperature, respectively; D

is the gap exponent and Ci are the correction amplitude or

coefficients. The parameter b is known as the order

parameter critical exponent. However, for the tempera-

tures, T, moderately close to critical point,

0 , ð12 ðT=TcÞÞ , 0:2, the gap exponent terms which

describe behaviour far away from the critical point were

expected to be very small as compared to other leading

terms [21]. Moreover, all the higher terms Ci for i . 0 in

the Wegner expansion, i.e. in Equation (4), can be

excluded without any significant change in the estimated

critical temperature, Tc. Therefore, the estimation of the

Tc is generally based on the knowledge of several liquid–

vapour coexistence points obtained from GC-TMMC

simulations in an appropriate temperature range. Further,

using the following simplified form of Equation (4), Tc is

estimated as

rl 2 rv ¼ C0 12
T

Tc

� �b

: ð5Þ

Another more rigorous technique for estimation of Tc

is based on Binder’s fourth-order cumulant, UL, given by

the following expression:

UL ¼ 12
M 4
� �

L

3 M 2h i
2
L

; ð6Þ

where M is the deviation from the mean density, i.e.

r2 krl. The kM 2l and kM 4l denote the second and fourth

moments of the order parameter. The cumulant, UL, at the

critical point would be a universal point [11].

The idea behind this technique is to record the UL

along the vapour–liquid saturation curve at different

temperatures near a guessed critical temperature for

different system sizes, L. For temperatures T . Tc, fourth-

order cumulant, UL, decreases to zero as UL is

proportional to L2d, where d is the dimensionality of the

system. On the other hand, for T , Tc, UL tends to

U1 ¼ 2=3. Thus, for a system size L0 . L and any T , Tc

we shall get UL0 . UL and if T . Tc, then UL0 , UL. This

behaviour of the cumulant makes it very useful for

obtaining the estimate of Tc. In this study, we have used

the guessed critical temperature estimated in our earlier

work [2,3,22], using simplified form of scaling law. To

evaluate it, UL is calculated for different temperatures

and is plotted against temperature for different system

sizes, L. The plots of UL for different L would ideally

or theoretically have a common intersection point.

However, practically at least their intersection would be

fairly close, corresponding to the critical temperature of an

infinite system [11,23]. Moreover, by computer simulation

which is a practical approach, it is not possible to get a

unique/common intersection point corresponding to the

critical temperature. In such cases, critical temperature is

estimated by taking average of the intersection points

which are fairly close in the current investigations, as

shown in Figures 1–3.

3. Results and discussion

We start our discussion with critical temperature

estimation of monatomic fluid in bulk and confined states

using a finite-size scaling technique of fourth-order Binder

cumulant, UL. As an example, we have taken square-well

fluid as a candidate for this study.

Figure 1(a)–(c) shows UL of the order parameter as the

function of temperature, T , calculated along the vapour–

liquid coexistence curve, for a bulk square well and the

fluid confined in attractive slit pore of widths, H ¼ 8 and 2

molecular diameters, respectively. Critical temperature,

Tc, of bulk square-well fluid estimated using fourth-order

cumulant technique is around 1.217 ^ 0.002 as reported in

Table 1. On the other hand, the critical temperature for the

studied bulk square-well fluid estimated in earlier work [3]

using simplified form of scaling law is around

1.219 ^ 0.001. Figure 1(b),(c) displays Tc for H ¼ 8 and

2, respectively, using cumulant approach. Tc estimated

using cumulant approach for H ¼ 8 and 2 are

1.097 ^ 0.006 and 0.734 ^ 0.001, respectively, as also

reported in Table 1. On the other hand, Tc for H ¼ 8 and 2,

estimated using simplified form of scaling law reported in

the earlier work [2], are 1.091 ^ 0.004 and 0.745 ^ 0.002,

respectively, also reported in Table 1. This indicates that,

with respect to cumulant approach, the difference in the

estimated critical temperature using simplified form of
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scaling law and cumulant approach for bulk square-well

fluid is less than 0.16%, whereas for H ¼ 8 and 2 this

difference is less than 0.6% and 1.5%, respectively. This

further indicates that the critical temperature estimated

using simplified form of scaling law is statistically fairly

close to the critical temperature estimated using more

rigorous and computationally intensive technique of

fourth-order Binder cumulant approach for the studied

monoatomic model fluid.

Inspired with the fairly close estimates of critical

temperature of confined monoatomic fluid, we studied the

accuracy of critical temperature estimated for more

complex confined fluids, such as n-alkanes, in the previous

work [2] using simplified form of scaling law of density.

Figure 2(a),(b) shows the critical temperature estimation

of n-butane confined in graphite (G) and mica (M) slit

pore, respectively, of width 20 Å using fourth-order

cumulant approach. Critical temperatures estimated

using cumulant approach, for n-butane confined in

graphite and mica slit-pores, are 342.6 ^ 1.6 and

341.4 ^ 1.4K, respectively, as also reported in Table 1.

Figure 1. The fourth-order cumulants, UL of order parameter,
estimated along vapour–liquid coexistence curve plotted as a
function of temperature, T, for different system sizes, L. (a–c)
Approach is demonstrated with a typical square-well fluid in bulk
and confined in attractive slit pore of width, H ¼ 8 and 2
molecular diameters, respectively. The UL is estimated at discrete
temperatures in the range 1.19 # T # 1.23, 1.08 # T # 1.1 and
0.73 # T # 0.75 for the cases (a), (b) and (c), respectively.

Figure 2. The fourth-order cumulants, UL of order parameter,
estimated along vapour–liquid coexistence curve plotted as a
function of temperature, T, for different system sizes, L. (a,b)
Approach is demonstrated with n-butane confined in graphite and
mica slit pore of 20 Åwidths, respectively. The UL is estimated at
discrete temperatures in the range 340K # T # 360K.
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As can be seen from Table 1, the difference in the critical

temperature estimation, using simplified form of scaling

law [2] and the cumulant approach, for n-butane confined

in graphite and mica slit pore is around 2.16% and 1.73%,

respectively. Further, cumulant technique is employed

to investigate and compare the critical temperature

estimation of confined n-octane. Figure 3(a),(b) displays

the critical temperature of n-octane confined in graphite

(G) and mica (M) slit pore, respectively, of width 30 Å,

using fourth-order cumulant approach. This investigation

shows that the critical temperatures estimated for n-octane

confined in graphite and mica slit pores are 486.2 ^ 1.8

and 467.8 ^ 2.1K, respectively. As can be seen from

Table 1, the difference in the critical temperature

estimation of confined n-octane, using simplified form of

scaling law reported in earlier work [2] and using cumulant

approach, is only around 1.23% and 3.18%, respectively.

Thus, these comparative investigations suggest that,

even with chain molecules, such as n-alkane confined in

slit pore geometry, the simplified form of scaling law

gives fairly reasonable estimates of the critical tempera-

ture when compared with the more rigorous and

computationally intensive approach of fourth-order Binder

cumulant.

4. Conclusions

In summary, we have carried out extensive simulations

using GC-TMMC technique and calculated fourth-order

Binder cumulants along the vapour–liquid coexistence

curve for simple spherical and chain-like molecules,

confined in slit pore geometry of different attractive

strengths. Undoubtedly, the critical temperature estimated

using fourth-order cumulant approach provides more

accurate estimates, because, in this approach, estimation of

Tc is not biased by any assumptions about critical

exponents. Moreover, as compared to the more rigorous

cumulant approach, critical temperature estimated by

simplified form of scaling law has shown overestimation

of less than 3.2% for the studied systems in this work. This

indicates that critical temperature estimation of studied

bulk and confined system using GC-TMMC approach in

conjunction with histogram reweighting technique and

simplified form of scaling law provides fairly good

estimate, provided the simulations performed with

reasonable system sizes and in appropriate temperature

ranges, depending on the pore width under investigation,

as reported in the previous work [2,3].

Figure 3. The fourth-order cumulants, UL of order parameter,
estimated along vapour–liquid coexistence curve plotted as a
function of temperature, T, for different system sizes, L. (a,b)
Approach is demonstrated with n-octane confined in graphite and
mica slit pore of 30 Åwidths, respectively. The UL is estimated at
discrete temperatures in the range 450K # T # 520K and
450K # T # 510K for the cases (a) and (b), respectively.

Table 1. Critical temperature, Tc data for square-well fluid and n-alkanes estimated using two different techniques.

Square-well n-Alkane

System
Tc from simplified
form of scaling law

Tc from fourth-order
cumulant approach

System
(Å)

Tc from simplified
form of scaling law (K)

Tc from fourth-order
cumulant approach (K)

Bulk 1.219 ^ 0.001 1.217 ^ 0.002 n-Butane G/20 350.0 ^ 1.0 342.6 ^ 1.6
H ¼ 8 1.091 ^ 0.004 1.097 ^ 0.006 M/20 347.3 ^ 1.2 341.4 ^ 1.4
H ¼ 2 0.745 ^ 0.002 0.734 ^ 0.001 n-Octane G/30 492.2 ^ 1.6 486.2 ^ 1.8

M/30 482.7 ^ 2.1 467.8 ^ 1.9

Notes: Standard deviation with 67% confidence limit of the estimated Tc is reported on the basis of three different simulations run for each system. Here, G
and M represent graphite and mica slit pores, respectively, for two different slit widths, H, 20 and 30 Å.
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